~______From Smile to Tears: Emotional StampedLock

- Javaad
Emotional Stampedlock

Dr Heinz M. Kabutz

Last updated 2014-03-23

O Javaspecialists.eu
java training

pansasay sybry ||y — zingey zuieH yL0Z-€L0Z @

/

Jovospb\cloum .eu

>

2

From Smile to Tears: Emotional StampedLock

Heinz Kabutz

® Author of The Java Specialists’' Newsletter

— Articles about advanced core Java programming

® http://lwww.javaspecialists.eu

=2]ava

Champions

pansesay sybry |1y — zinge)] zuldH y10Z-€1L0Z ©

f

|

£
B e B O ——
{ o * g —
o "
.’ a'-\\

- -;.,--;;.; TZ%??'."“"

-l ®

> bw
f ‘;({‘,;'

edlock

.fJavqggaeiglé;All%tg.eu

W

pansasay sybry |1y — zingey zuleH 102-€10Z O

——

—

Javaspecialists.eu

N

From Smile to Tears: Emotional StampedLock

Motivation For Stampedlock

® Some constructs need a form of read/write lock

® ReentrantReadWriteLock can cause starvation

— Plus it always uses pessimistic locking

pansesay sybry |Iv — zinge)] zuisH $10Z-€102 @

/

Javaspecialists.eu

O

From Smile to Tears: Emotional StampedLock

Motivation For Stampedlock

® StampedLock provides optimistic locking on reads

— Which can be converted easily to a pessimistic read

® Write locks are always pessimistic

— Also called exclusive locks

| ® StampedLock is not reentrant

pansesay sybry |Iv — zinge)] zuisH $10Z-€102 @

@)}

From Smile to Tears: Emotional StampedLock

Read-Write Locks Refresher

® ReadWriteLock interface

/

— The writeLock() is exclusive - only one thread at a time

— The readLock() is given to lots of threads at the same time
* Much better when mostly reads are happening

— Both locks are pessimistic

Javaspecialists.eu

paasasay sybry |1y — zynqey] zuldH $102-€102 @

From Smile to Tears: Emotional StampedLock /4
[| [| @
N
Account With Reentrantreadwritelocklg
N
public class BankAccountWithReadWritelLock { §
.| private final ReadWriteLock lock = -
new ReentrantReadWritelLock(); e)
private double balance; - The cost overhead ",:
public void deposit(double amount) { | »
F+ lock.writeLock().lock(); of the RWLock £
“ try { means we need at §
» balance = balance + amount; B
o } finally { lock.writelLock().unlock(); } . least 2000 o
O | Instructions to B
g public double getBalance() { " benefit from the b
o lock. readLock().lock(); 1 L
§ try { readLock() added ;
return balance; thr()ughput]g
y finally { lock.readLock().unlock(); } —

I3

}

Qo

From Smile to Tears: Emotional StampedLock

Reentrantreadwritelock Starvation

® When readers are given priority, then writers might
never be able to complete (Java 5)

® But when writers are given priority, readers might
be starved (Java 6)

1 ® http://lwww.javaspecialists.eu/archive/lssue165.html

Javaspecialists.eu
pansasay sIYBIY |1V — Zinge)| zuldH #102-£102 ©

©

From Smile to Tears: Emotional StampedLock

Java 5 Readwritelock Starvation

’ lock.read k k{).lock lock.write
_uniockg § @ '

€102 ©

® We first acquire some read locks

/

® We then acquire one write lock

ReadWritelL.ock

1| ® Despite write lock waiting, read
locks are still iIssued

® If enough read locks are issued,
write lock will never get a chance il
and the thread will be starved!

=

From Smile to Tears: Emotional StampedLock

Readwritelock In Java 6

I)2-EL0ZO S

® Java 6 changed the policy
and now read locks have to | wweso [l wowngadetorean

wait until the write lock has Thread Count:
. Waiting to acquire READ lock
been issued

lock.writeLock().lock()

/

ReadWritelLock

However, now the readers
can be starved if we have
a lot of writers

/

Jovaspb\cloum.ou

From Smile to Tears: Emotional StampedLock

Synchronized vs Reentrantlock

® ReentrantReadWriteLock, ReentrantLock and
synchronized locks have the same memory
semantics

® However, synchronized is easier to write correctly
synchronized(this) <{ . _
// do operation rwlock.writelLock().lock();
1 try
ee— // do operation
} finally {

~\
~\

ia IV — Z)nqe)| zuieH ¢102-€10C ©

rwlock.writeLock().unlock(): :

}

| ® Either no try-finally at all

Javaspecialists.eu

L
N

From Smile to Tears: Emotional StampedLock

Bad Try-Finally Blocks

rwlock.writeLock().lock():
// do operation
rwlock.writeLock().unlock():

B ——

pansesay sybry |Iv — zinge)] zuisH $10Z-€102 @

| ® Or the lock is locked inside the try block

Javaspecialists.eu

o\
L

From Smile to Tears: Emotional StampedLock

Bad Try-Finally Blocks

try {
rwlock.writeLock(). lock():
// do operation

} finally {
rwlock.writeLock().unlock():

I3

e —————

pansesay sybry |Iv — zinge)] zuisH $10Z-€102 @

| ® Or the unlock() call is forgotten in some places

Javaspecialists.eu

<
"

From Smile to Tears: Emotional StampedLock

Bad Try-Finally Blocks

altogether!

rwlock.writeLock().lock():
// do operation
// no unlock()

pansesay sybry |Iv — zinge)] zuisH $10Z-€102 @

<
O

From Smile to Tears: Emotional StampedLock

Introducing Stampedlock

® Pros

/

— Has better performance than ReentrantReadWriteLock
— Latest versions do not suffer from starvation of writers

® Cons

— |ldioms are more difficult than with ReadWriteLock

A small change in idiom code can make a big difference
in performance

Jovaspb\cloum.ou

— Not nonblocking

pansesay sybry |1y — zinge)] zuldH y10Z-€1L0Z ©

— Non-reentrant

=
@)}

From Smile to Tears: Emotional StampedLock

Pessimistic Exclusive Locks (Write)

public class StampedLock <{
| long writeLock()
long writeLockInterruptibly()
throws InterruptedException

long tryWriteLock()
long tryWriteLock(long time, TimeUnit unit)
throws InterruptedException

void unlockWrite(long stamp)
boolean tryUnlockWrite()

Javaspecialists.eu

pansesay sybry |Iv — zinge)] zuisH $10Z-€102 @

Lock asWriteLock()
long tryConvertToWriteLock(long stamp)

<
~N

From Smile to Tears: Emotional StampedLock

Pessimistic Non-Exclusive (Read)

public class StampedLock { (continued ..)
| long readLock()
long readLockInterruptibly()
throws InterruptedException

long tryReadLock()
long tryReadLock(long time, TimeUnit unit)
throws InterruptedException

void unlockRead(long stamp) -?S_E;;Eﬁcreads
boolean tryUnlockRead() P |

Mvasb‘gclollsts.ou

to come ...

m

paasasay sybry |1y — zynqey] zuldH $102-€102 @

Lock asReadLock()
long tryConvertToReadLock(long stamp)

=
o

From Smile to Tears: Emotional StampedLock

Bank Account With Stampedlock

public class BankAccountWithStampedLock {
| private final StampedLock lock = new StampedLock();
private double balance;
public void deposit(double amount) {
long stamp = lock.writelLock();

IRy IV — Zingqe) zuidH ¥102-€10C ©

> try {
® balance = balance + amount;
g } finally { lock. unlockerte(stamp) }

I3 e ——
% public double getBalance() { .The StampedLock readlng
S long stamp = lock.readlLock(); 1s a typically cheaper than { M
g try 1 ReentrantReaderteLock w

6

return balance;
} finally { lock. unlockRead(stamp) }

}

pPoAl:

o
©

From Smile to Tears: Emotional StampedLock

Why Not Use Volatile?

public class BankAccountWithVolatile {
- | private volatile double balance;

public synchronized void deposit(double amount) {

pansesay sybry |Iv — zinge)] zuisH $10Z-€102 @

F+ balance = balance + amount;

g +

%, public double getBalance() {

a return balance: —
o 1 | Much easier! |
S K Works because there

are no invariants |
| across the fields. |

N
S

From Smile to Tears: Emotional StampedLock

Example With Invariants Across Fields

® Point class has X,y coordinates, "belong together™

/

public class MyPoint A
private double x, y;
private final StampedLock sl = new StampedLock();

>
)

= // method 1is modifying x and y, needs exclusive lock
s public void move(double deltaX, double deltaY) {

'3 long stamp = sl.writelLock();

“§L try {

o X += deltaX;

o y += deltay,;

paasasay sybry |1y — zynqey] zuldH $102-€102 @

} finally { sl.unlockWrite(stamp); }
}

N
-

From Smile to Tears: Emotional StampedLock

Optimistic Non-Exclusive "Locks"

public class StampedLock { Tryto getan optimistic read
| long tryOptimisticRead () lock - might return zero if |
an exclusive

normal volatile reads - a new
explicit loadFence() was added

> .
; boolean validate(long stamp) checks whether a write
= __ (= lock was issued after the |
% , Note: sequence validation requires tryOptimisticRead() was |
g | stricter ordering than apply to “ Lcalled f
g -
2

poAsesay SIYBIY IV — ZINGEY ZUIeH ¥10Z-E10Z O

long tryConvertToOptimisticRead(long stamp)

N
N

From Smile to Tears: Emotional StampedLock

Code Idiom For Optimistic Read

public double optimisticRead() {
- | long stamp = sl.tryOptimisticRead();
double currentStatel = statel,
currentState2 = state?2, ... etc.;
if (!sl.validate(stamp)) {

>
@ stamp = sl.readLock();

» try {

o currentStatel = statel;

. currentState2 = state2, ... etc.;
Y} finally {

o sl.unlockRead(stamp);

L. }

pansesay sybry |Iv — zinge)] zuisH $10Z-€102 @

}

return calculateSomething(currentStatel, currentState2);

N
Q

From Smile to Tears: Emotional StampedLock

Code Idiom For Optimistic Read

public double optimisticRead() {

}

return calculateSomething(currentStatel, currentState2);

h

@

S

@

§

——— H

long stamp = sl.tryOptimisticRead(); We geta | PG
double currentStatel = statel; ¢ ¢ B3
currentState?2 = state?2, ... etc.; | Staimp 1o usc X

M if (!sl.validate(stamp)) { | for the g
e stamp = sl.readLock(); | optimistic | B
= try 1 read | B=
o currentStatel = statel; =
-4 currentState2 = state?2, ... etc.;)
Q } finally { @
o s1.unlockRead(stamp); %
2 I3 o
= 2
®

Q.

N
"N

From Smile to Tears: Emotional StampedLock

Code Idiom For Optimistic Read

public double optimisticRead() {
long stamp = sl.tryOptimisticRead(); —
double currentStatel = statel, We read |
currentState2 = state2, ... etc.; field values |
if (!sl.validate(stamp)) { ‘ ’

> '
e stamp = sl.readlLock(); | into local |
b try { fields |
S currentStatel = statel; - o
g currentState2 = state?2, ... etc.;

Q } finally {

% sl.unlockRead{stamp);

° +

}

return calculateSomething(currentStatel, currentState2);

h

pansesay sybry ||y — zingey zuieH y10Z-€10Z ©

N
O

From Smile to Tears: Emotional StampedLock

Code Idiom For Optimistic Read

public double optimisticRead() {
long stamp = sl.tryOptimisticRead();
double currentStatel = statel,

currentState2 = state2, ... etc.;

~| if (!sl.validate(stamp)) A L
e stamp = sl.readLock(); Next we validate |
= try 1 that no write

= currentStatel = statel; |
° currentState2 = state2, ... etc.: | IO.CkS haYe been |
8 } finally { | 1ssued in the |
S sl.unlockRead(stamp); - meanwhile |
3 ¥ -

}

return calculateSomething(currentStatel, currentState2);

h

pansesay sybry ||y — zingey zuieH y10Z-€10Z ©

N
@)

From Smile to Tears: Emotional StampedLock

Code Idiom For Optimistic Read

@

S

| G

- B S

public double optimisticRead() { If they have, [=<
B long stamp = sl.tryOptimisticRead(); then we don't &3
double currentStatel = statel, | - s
currentState2 = state2, ... etc.;| kn(m./ I our state :75

B it (1sl.validate(stamp)) { | ks
@ stamp = sl.readLock(); $
> try { >
= currentStatel = statel; " Th acauire a | B
8 currentState2 = state2, ... etc.;; us We gqu ©a Q
a } finally { pessimistic read S
S sl.unlockRead(stamp); | lock and read the g
_O’ } : g o
1 | state into local | 2
fields T

return calculateSomething(currentStat(

h

N
~N

From Smile to Tears: Emotional StampedLock

Code Idiom For Optimistic Read

public double optimisticRead() {
- | long stamp = sl.tryOptimisticRead();
double currentStatel = statel,
currentState2 = state?2, ... etc.;
if (!sl.validate(stamp)) {

>
@ stamp = sl.readLock();

» try {

o currentStatel = statel;

. currentState2 = state2, ... etc.;
Y} finally {

o sl.unlockRead(stamp);

L. }

pansesay sybry |Iv — zinge)] zuisH $10Z-€102 @

}

return calculateSomething(currentStatel, currentState2);

28

From Smile to Tears: Emotional StampedLock

Optimistic Read In Point Class

public double distanceFromOrigin() {
~ | long stamp = sl.tryOptimisticRead();
double currentX = x, currentY = vy;
if (!'sl.validate(stamp)) {

2 stamp = sl.readLock(); f“§ESEE§EEEZIxuhin
g ter{*ren o - B optimistic read leads
:_8" currenty = y; to better read |
e } finally { | performance than with |
§ sl.unlockRead(stamp); | original examples in }
d _ JavaDoc

paasasay sybry |1y — zynqey] zuldH $102-€102 @

return Math.hypot(currentX, currentY);

}

—

p—

Javaspecialists.eu

N
©

From Smile to Tears: Emotional StampedLock

Code ldiom For Conditional Change

public boolean changeStatelfEquals(oldStatel, oldState2, ...
newStatel, newState2, ...) {
long stamp = sl.readLock();
try {
while (statel == oldStatel && state2 == oldState2 ...) {
long writeStamp = sl.tryConvertToWriteLock(stamp);
if (writeStamp != @L) {
stamp = writeStamp;
statel = newStatel; state2 = newStatel;
return true;
r else {
sl.unlockRead(stamp);
stamp = sl.writelLock();

}
¥

return false:
} finally { sl.unlock(stamp); }

s

pansesay sybry |Iv — zinge)] zuisH $10Z-€102 @

Code Idiom For Conditional Change

public boolean changeStatelfEquals(oldStatel, oldState2,

Javaspecialists.eu

s

QW
S

From Smile to Tears: Emotional StampedLock

newStatel, newState2, ...) {
long stamp = sl.readLock();
try {
while (statel == oldStatel && state2 == oldState2 ...) {
long writeStamp. = sl.tryConvertToWriteLock(stamp);
if (writeStamp != 0L) {
stamp = writeStamp;
statel = newStatel; state?2 = newState?;
return true;
} else {
sl.unlockRead(stamp); - 4 —
: stamp = sl.writelLock(); We get a pessimistic |
} read lock W
return false; — —_—
} finally { sl.unlock(stamp); }

paAsasay sybry ||y — Zinge)| zuidH #10Z-£10Z @

Code ldiom For Conditional Change

public boolean changeStatelfEquals(oldStatel, oldState2,

Javaspecialists.eu

s

QW
=

From Smile to Tears: Emotional StampedLock

newStatel, newState2, ...) {
long stamp = sl.readlLock();
try {
while (statel == oldStatel && state2 == oldState2 ...) {
long writeStamp. = sl.tryConvertToWritst-eslletamal S
if (writeStamp != @L) . { . If the state is not the |
stamp = writeStamp; 5
statgl = newStateg; state?2 = newStg eXpeCted Stz}te’ wE |
return true; | unlock and exit method |
} else { S D, ol
sl.unlockRead(stamp);
stamp = sl.writelLock();

pansesay sybry |Iv — zinge)] zuisH $10Z-€102 @

} ' Note: the general unlock()

} method can unlock both |
return false: d and o Tock ¢

y finally { sl.unlock(stamp); } , ir%a, an%qulc:ocsg

Code Idiom For Conditional Change

public boolean changeStateIquuals(oldStatel, oldState2,

Jovaspoclallsts.ou

s

W
N

From Smile to Tears: Emotional StampedLock

newStat(
long stamp = sl.readlLock(); We try convert our read '
try { lock to a write lock i
while (statel == oldStatel && state?2 =l —e—oo~cocce=—

long writeStamp = sl. tryConvertToerteLock(stamp)
if (writeStamp != 0OL) {

stamp = writeStamp;

statel = newStatel; state2 = newStatezl;

return true;
} else {

sl.unlockRead(stamp);

stamp = sl.writelLock();

h

pansasay sybry ||V — zinge) zu!a|.| ¥7102-€10C ©

}

return false;
y finally { sl.unlock(stamp); }

Code Idiom For Conditional Change

public boolean changeStatelfEquals(oldStatel, oldState2,

Javaspecialists.eu

s

LW
QL

From Smile to Tears: Emotional StampedLock

newStatel, newState2, ...) {
long stamp = sl.readlLock();
try {
while (statel == oldStatel && state2 == oldState2 ...) {
long writeStamp. = sl.tryConvertToWriteLock(stamp);
if (writeStamp '= 0OL) {
stamp = writeStamp;
statel = newStatel; state2 = newState’;
return true;

pansesay sybry |Iv — zinge)] zuisH $10Z-€102 @

} else {
sl.unlockRead(stamp); S e
stamp = sl.writeLock(): If we are able to upgrade to
\ ; a write lock (ws !=0L), We
return false; __change the state andex1t

} finally { sl.unlock(stamp); } -

Jovoquclallsts.ou

s

From Smile to Tears: Emotional StampedLock

long stamp = sl.readlLock();

try {
while (statel

if (writeStamp != 0OL) {
stamp = writeStamp;

statel = newStatel; state?2 = newState2;

return true;

} else {
sl.unlockRead(stamp);
stamp = sl.writeLock();

}
}

return false;
y finally { sl.unlock(stamp); }

i =
|

" Else, we explicitly |

Code Idiom For Conditional Change

public boolean changeStatelfEquals(oldStatel, oldState2,
newStatel,

oldStatel && state2
long writeStamp = sl.tryConvertToWritelLock(stamp);

QW
N

ey

newState2,

oldState2 ...) {

read loclf and lock ri lk

PaAlasay syoY ||V — Zinqge)] ZuleH 102-€10Z ©

Code ldiom For Conditional Change

public boolean changeStatelfEquals(oldStatel, oldState2,

Javaspecialists.eu

s

oV
O

From Smile to Tears: Emotional StampedLock

newStatel, newState2, ...) {
long stamp = sl.readlLock();
try {
while (statel == oldStatel && state2 == oldState2 ...) {
long writeStamp. = sl.tryConvertToWriteLock(stamp);
if (writeStamp != 0OL) {

stamp = writeStamp; ~ If the state 1s not the
statel = newStatel; state2 = newS] d, |
return true: expected state, we |
1 else { unlock and ex1t method |

sl.unlockRead(stamp);
stamp = sl. wrlteLockLLz__________:-

\ ' - This could happen if betweenthe %
return false; unlockRead() and the writeLock() |
} finally { sl.unlock(stal another thread can he Valus |

pansesay sybry |Iv — zinge)] zuisH $10Z-€102 @

Code |Idiom For Conditional Cange

public boolean ChangeStateIquuals(oa ‘Because we hold the write lock,

Javaspecialists.eu

s

QW
@)}

From Smile to Tears: Emotional StampedLock

1 the tryConvertToWriteLock()

tg;g{stamp = sl.readlLock(); method will succeed

while (statel == oldStatel && state2 == oldState? e
long writeStamp = sl.tryConvertToWriteLock(stamp);
if (writeStamp '= 0OL) {
stamp = writeStamp;
statel = newStatel; state?2 = newState?;
return true;
} else { L _ N .
sl.unlockRead(stamp); |
stamp = sl.writelock(); ,Q We ,“P_Eiate the Sate andeXIt

h

pansesay sybry |Iv — zinge)] zuisH $10Z-€102 @

}

return false;
y finally { sl.unlock(stamp); }

—

p—

Javaspecialists.eu

Q
~N

From Smile to Tears: Emotional StampedLock

Code ldiom For Conditional Change

public boolean changeStatelfEquals(oldStatel, oldState2, ...
newStatel, newState2, ...) {
long stamp = sl.readLock();
try {
while (statel == oldStatel && state2 == oldState2 ...) {
long writeStamp = sl.tryConvertToWriteLock(stamp);
if (writeStamp != @L) {
stamp = writeStamp;
statel = newStatel; state2 = newStatel;
return true;
r else {
sl.unlockRead(stamp);
stamp = sl.writelLock();

}
¥

return false:
} finally { sl.unlock(stamp); }

s

pansesay sybry |Iv — zinge)] zuisH $10Z-€102 @

p—

-l

Javaspecialists.eu

From Smile to Tears: Emotional StampedLock

Applying To Our Point Class

public boolean movelfAt(double oldX, double oldY,
double newX, double newY) {
long stamp = sl.readLock();
try {
while (x == oldX && y == oldY) {

long writeStamp = sl.tryConvertToWriteLock(stamp);

if (writeStamp != @L) {
stamp = writeStamp;
X = newX; y = newy,;
return true;

} else {
sl.unlockRead(stamp);

}

stamp = sl.writeLock();

¥

return false:

} finally { sl.unlock(stamp); }

Q
Qo

pansesay sybry |Iv — zinge)] zuisH $10Z-€102 @

39

From Smile to Tears: Emotional StampedLock

Performance Stampedlock & Rwlock

® We researched ReentrantReadWriteLock in 2008

— Discovered serious starvation of writers (exclusive lock) in Java 5

/

— And also some starvation of readers in Java 6

— http://www.javaspecialists.eu/archive/lssue165.html

® StampedLock released to concurrency-interest list 12" Oct 2012

— Worse writer starvation than in the ReentrantReadWriteLock

— Missed signals could cause StampedLock to deadlock

® Revision 1.35 released 28" Jan 2013

— Changed to use an explicit call to loadFence()

pansesay sybry |1y — zinge)] zuldH y10Z-€1L0Z ©

— Writers do not get starved anymore

— Works correctly

40

From Smile to Tears: Emotional StampedLock

@

Performance Stampedlock & RwlockE

W

N

2

® In our test, we used >

—— : : L
— lambda-8-b75-linux-x64-28 jan_ 2013.tar.gz '5".

— Two CPUs, 4 Cores each, no hyperthreading ;

= . 2x4x1 o

: — Ubuntu 9.10 fr

> . >

..""o. — 64-bit =

1| - Intel(R) Core(TM) i7 CPU 920 @ 2.67GHz s

v -
g L1-Cache: 256KiB, internal write-through instruction 7y
2 e L2-Cache: 1MiB, internal write-through unified ?

2 e L3-Cache: 8MiB, internal write-back unified 3

®

o

— JavaSpecialists.eu server
* Never breaks a sweat delivering newsletters

/

Javaspecialists.eu

"
<

From Smile to Tears: Emotional StampedLock

Conversions To Pessimistic Reads

® In our experiment, reads had to be converted to
pessimistic reads less than 10% of the time

— And in most cases, less than 1%

® This means the optimistic read worked most of the
time

paasasay sybry |1y — zynqey] zuldH $102-€102 @

42

From Smile to Tears: Emotional StampedLock

How Much Faster |Is Stampedlock [
Than Reentrantreadwritelock 5
- | ® With a single thread >
§ . 4.43x . Reacll Speedup i

2 I Write Speedup)

L 3 =
o T 3 2
3 : . 0.00x 0.00x._ %

R=1,W=0 R=0,W=1

43

From Smile to Tears: Emotional StampedLock

How Much Faster |Is Stampedlock

Than Reentrantreadwritelock?
® With four threads

1000

393X B Read Speedup
B Write Speedup

100 -

11x 12X
10 -

1.2Xx

1 /

0.9x

x faster than ReadWriteLock

Javaspecialists.eu

pansesay sybry |Iv — zinge)] zuisH $10Z-€102 @

R=4,W=0 R=3,W=1 R=2,W=2 R=1,W=3 R=0,W=4

"
N

From Smile to Tears: Emotional StampedLock

How Much Faster Is Stampedlock
Than Reentrantreadwritelock”?

® With sixteen threads

10000

1000

x faster than ReadWritelLock

Javaspecialists.eu

1 R

This demonstrates the]

starvation problem on readers| |
in RWLOCk |

IV — Z)nqe) ZuleH y102-€10C ©

™ Read Speedup
B Write Speedup

poAIOSaY S

16,W=0R=13,W=3 R=10,W=6 R=7/,W=9 R=4,W=12 R=1,W=15

From Smile to Tears: Emotional StampedLock

Reader Throughput With Stampedlock

M Read Throughput
[Expected (linear to n cores)

— 10000
Q
T
(&
(/p
o
=
i«
> T
o @
“ > 1000
. =l
: 5
Q
g
a 2
i e
.
o = 100 -
q

1 2 4

38 16

Number of Reader Threads (no Writers)

45

pansesay sybry ||y — zingey zuieH y10Z-€10Z ©

46

From Smile to Tears: Emotional StampedLock

Writer Throughput With Stampedloc

2.0

|
B Write Throughput

1.5

1.0 -

0.5 -

Throughput (Linear Scale)

raspecialists.eu

Note: Linear
Scale | /
throughput |’

1 2 4 8 16

Number of Writer Threads (no Readers)

pansesay sybry |Iv — zinge)] zuisH $10Z-€102 @

From Smile to Tears: Emotional StampedLock

Mixed Reader Throughput Stampedloc

10000
3 ©
=
= 1000 -
= S
o O
2 =8 100
z 3¢
o 2
g. 5 10
Q C
» =
o
>
o
q

N
~N

B Read Throughput

” H"mlllln

161514131211109 8 7 6 5 4 3 2 1
Number of Reader Threads (16 - n Writers)

pansesay sybry |Iv — zinge)] zuisH $10Z-€102 @

N
Qo

From Smile to Tears: Emotional StampedLock

. @

N

Mixed Reader T'hroughput Rwlock E

W

S

ReentrantReadWriteLock e

— 100 - =
2 B Read Throughput [

< 10 ; 2\

= g

> ®© c

® S m 1)

2 = |
w = O P>

o 2 ¥ 0.1 T -
o 5 . Shows &
2 g 00 Reader @
S = o0t o ¥ Starvation 2

O ' l . | B

- 161514131211109 8 7 6 5§ 4 3 2 1 | 1n >

| ®

Number of Reader Threads (16 - n RWlock | B

Writers)

N
©

From Smile to Tears: Emotional StampedLock

Conclusion Of Performance Analysi

® StampedLock performed very well in all our tests

/

— Much faster than ReentrantReadWriteLock

® Offers a way to do optimistic locking in Java

® Good idioms have a big impact on the performance

Javaspecialists.eu
paasesay SIBIY IV — ZINge) ZUISH Y1L0Z-E10Z @

From Smile to Tears: Emotional StampedLock

~_ |ldioms With Lambdas

Q Javaspecialists.eu

2 VO Tr‘cwhlrw«;;

O
S

paAsasay sIybiy || — zinge)| zuieH ¥1L0Z-£1L0Z ®

Ol
<

From Smile to Tears: Emotional StampedLock

. : ®

ldioms With Lambdas -

0

Q

® Java 8 lambdas allow us to define a structure of a 5

method, leaving the details of what to call overto [

users &

° g

».| — Abit like the "Template Method" Design Pattern y

= List<String> students = new ArraylList<>(); =

% Collections.addAll(students, "Anton", "Heinz", "John"); §

-4 students.forEach((s) —> System.out.println(s.toUpperCase()));
w

: ANTON §;

HEINZ §

JOHN

From Smile to Tears: Emotional Stamped

/

f%

Lambdaftaq.Org

® Edited by Maurice Naftalin

Are lambda expressions objects?

Why are lambda expressions so-called?
Why are lambda expressions being added to Java?
Where is the Java Collections Framework going?

Why are Stream operations not defined directly on
Collection?

etc.

pantasay sybry |1y - 2}

http://www.lambdafaq.org/are-lambda-expressions-objects/
http://www.lambdafaq.org/why-are-lambda-expressions-so-called/
http://www.lambdafaq.org/why-are-lambda-expressions-being-added-to-java/
http://www.lambdafaq.org/where-is-the-java-collections-framework-going/
http://www.lambdafaq.org/why-are-stream-operations-not-defined-directly-on-collection/

Javaspecialists.eu

From Smile to Tears: Emotional StampedLock

ldioms For Using Stampedlock

import java.util.concurrent. locks.x;
-~ |import java.util.function.x;

try {
writeJob.run():
} finally {

}

sl.unlockWrite(stamp);

public class LambdaStampedLock extends StampedLock {
public void writeLock(Runnable writeJob) {
long stamp = writelLock();

Isl.writeLock(

() —> {
X += deltaX:
y += deltayY;
+

) ;

O
L

pansesay sybry |Iv — zinge)] zuisH $10Z-€102 @

O
"

From Smile to Tears: Emotional StampedLock

ldioms For Using Stampedlock

public <T> T optimisticRead(Supplier<T> supplier) {
| long stamp = tryOptimisticRead();
T result = supplier.get();
if (!validate(stamp)) {
stamp = readLock();

pansesay sybry |Iv — zinge)] zuisH $10Z-€102 @

-
o try {
- result = supplier.get();
s } finally {
o unlockRead(stamp);
% \ ; double[] xy = lsl.optimisticRead(
'§ return result:).() —> new double[]{x, vy}
; return Math.hypot(xy[0], xyl[1]);

From Smile to Tears: Emotional StampedLock

ldioms For Using Stampedlock

public static boolean conditionalWrite(
BooleanSupplier condition, Runnable action) {

——

= long stamp = readLock();
try {

while (condition.getAsBoolean()) A
long writeStamp = tryConvertToWriteLock(stamp);

> if (writeStamp !'= 0) {
® action.run();
o .
- stamp = writeStamp;
= return true;
o } else {
' unlockRead (stamp);
~€{ stamp = writelLock();
5 s
> }
S return false;

} finally {

unlock(stamp);

}
}

return 1sl.conditionalWrite(
() —> x == oldX && y == oldY,
() => { x = newX; y = newY; }

) ;

Ol
O

pansesay sybry |Iv — zinge)] zuisH $10Z-€102 @

~______From Smile to Tears: Emotional StampedLock

From Smile To Tears:
~ Emotional Stampedlock

heinz@javaspecialists.eu

Questions?

O Javaspecialists.eu
java rraining

O
@)}

pansasay sybry |Iv — zinge)y] zuisH y10Z-€10Z @

__From Smile to Tears: Emotional StampedLock

~ The Java Specialists’ Newsletter

| Javaspecialists.eu

java 1

O
~N

pansasay sybry |Iv — zinge)y] zuisH y10Z-€10Z @

